Anti-Grain Geometry Tutorial
agg_math.h
1 //----------------------------------------------------------------------------
2 // Anti-Grain Geometry - Version 2.4
3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
4 //
5 // Permission to copy, use, modify, sell and distribute this software
6 // is granted provided this copyright notice appears in all copies.
7 // This software is provided "as is" without express or implied
8 // warranty, and with no claim as to its suitability for any purpose.
9 //
10 //----------------------------------------------------------------------------
11 // Contact: mcseem@antigrain.com
12 // mcseemagg@yahoo.com
13 // http://www.antigrain.com
14 //----------------------------------------------------------------------------
15 // Bessel function (besj) was adapted for use in AGG library by Andy Wilk
16 // Contact: castor.vulgaris@gmail.com
17 //----------------------------------------------------------------------------
18 
19 #ifndef AGG_MATH_INCLUDED
20 #define AGG_MATH_INCLUDED
21 
22 #include <cmath>
23 #include "agg_basics.h"
24 
25 namespace agg
26 {
27 
28  //------------------------------------------------------vertex_dist_epsilon
29  // Coinciding points maximal distance (Epsilon)
30  const double vertex_dist_epsilon = 1e-14;
31 
32  //-----------------------------------------------------intersection_epsilon
33  // See calc_intersection
34  const double intersection_epsilon = 1.0e-30;
35 
36  //------------------------------------------------------------cross_product
37  AGG_INLINE double cross_product(double x1, double y1,
38  double x2, double y2,
39  double x, double y)
40  {
41  return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);
42  }
43 
44  //--------------------------------------------------------point_in_triangle
45  AGG_INLINE bool point_in_triangle(double x1, double y1,
46  double x2, double y2,
47  double x3, double y3,
48  double x, double y)
49  {
50  bool cp1 = cross_product(x1, y1, x2, y2, x, y) < 0.0;
51  bool cp2 = cross_product(x2, y2, x3, y3, x, y) < 0.0;
52  bool cp3 = cross_product(x3, y3, x1, y1, x, y) < 0.0;
53  return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;
54  }
55 
56  //-----------------------------------------------------------calc_distance
57  AGG_INLINE double calc_distance(double x1, double y1, double x2, double y2)
58  {
59  double dx = x2-x1;
60  double dy = y2-y1;
61  return std::sqrt(dx * dx + dy * dy);
62  }
63 
64  //--------------------------------------------------------calc_sq_distance
65  AGG_INLINE double calc_sq_distance(double x1, double y1, double x2, double y2)
66  {
67  double dx = x2-x1;
68  double dy = y2-y1;
69  return dx * dx + dy * dy;
70  }
71 
72  //------------------------------------------------calc_line_point_distance
73  AGG_INLINE double calc_line_point_distance(double x1, double y1,
74  double x2, double y2,
75  double x, double y)
76  {
77  double dx = x2-x1;
78  double dy = y2-y1;
79  double d = std::sqrt(dx * dx + dy * dy);
80  if(d < vertex_dist_epsilon)
81  {
82  return calc_distance(x1, y1, x, y);
83  }
84  return ((x - x2) * dy - (y - y2) * dx) / d;
85  }
86 
87  //-------------------------------------------------------calc_line_point_u
88  AGG_INLINE double calc_segment_point_u(double x1, double y1,
89  double x2, double y2,
90  double x, double y)
91  {
92  double dx = x2 - x1;
93  double dy = y2 - y1;
94 
95  if(dx == 0 && dy == 0)
96  {
97  return 0;
98  }
99 
100  double pdx = x - x1;
101  double pdy = y - y1;
102 
103  return (pdx * dx + pdy * dy) / (dx * dx + dy * dy);
104  }
105 
106  //---------------------------------------------calc_line_point_sq_distance
107  AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1,
108  double x2, double y2,
109  double x, double y,
110  double u)
111  {
112  if(u <= 0)
113  {
114  return calc_sq_distance(x, y, x1, y1);
115  }
116  else
117  if(u >= 1)
118  {
119  return calc_sq_distance(x, y, x2, y2);
120  }
121  return calc_sq_distance(x, y, x1 + u * (x2 - x1), y1 + u * (y2 - y1));
122  }
123 
124  //---------------------------------------------calc_line_point_sq_distance
125  AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1,
126  double x2, double y2,
127  double x, double y)
128  {
129  return
130  calc_segment_point_sq_distance(
131  x1, y1, x2, y2, x, y,
132  calc_segment_point_u(x1, y1, x2, y2, x, y));
133  }
134 
135  //-------------------------------------------------------calc_intersection
136  AGG_INLINE bool calc_intersection(double ax, double ay, double bx, double by,
137  double cx, double cy, double dx, double dy,
138  double* x, double* y)
139  {
140  double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy);
141  double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx);
142  if(std::fabs(den) < intersection_epsilon) return false;
143  double r = num / den;
144  *x = ax + r * (bx-ax);
145  *y = ay + r * (by-ay);
146  return true;
147  }
148 
149  //-----------------------------------------------------intersection_exists
150  AGG_INLINE bool intersection_exists(double x1, double y1, double x2, double y2,
151  double x3, double y3, double x4, double y4)
152  {
153  // It's less expensive but you can't control the
154  // boundary conditions: Less or LessEqual
155  double dx1 = x2 - x1;
156  double dy1 = y2 - y1;
157  double dx2 = x4 - x3;
158  double dy2 = y4 - y3;
159  return ((x3 - x2) * dy1 - (y3 - y2) * dx1 < 0.0) !=
160  ((x4 - x2) * dy1 - (y4 - y2) * dx1 < 0.0) &&
161  ((x1 - x4) * dy2 - (y1 - y4) * dx2 < 0.0) !=
162  ((x2 - x4) * dy2 - (y2 - y4) * dx2 < 0.0);
163 
164  // It's is more expensive but more flexible
165  // in terms of boundary conditions.
166  //--------------------
167  //double den = (x2-x1) * (y4-y3) - (y2-y1) * (x4-x3);
168  //if(fabs(den) < intersection_epsilon) return false;
169  //double nom1 = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3);
170  //double nom2 = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3);
171  //double ua = nom1 / den;
172  //double ub = nom2 / den;
173  //return ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0;
174  }
175 
176  //--------------------------------------------------------calc_orthogonal
177  AGG_INLINE void calc_orthogonal(double thickness,
178  double x1, double y1,
179  double x2, double y2,
180  double* x, double* y)
181  {
182  double dx = x2 - x1;
183  double dy = y2 - y1;
184  double d = std::sqrt(dx*dx + dy*dy);
185  *x = thickness * dy / d;
186  *y = -thickness * dx / d;
187  }
188 
189  //--------------------------------------------------------dilate_triangle
190  AGG_INLINE void dilate_triangle(double x1, double y1,
191  double x2, double y2,
192  double x3, double y3,
193  double *x, double* y,
194  double d)
195  {
196  double dx1=0.0;
197  double dy1=0.0;
198  double dx2=0.0;
199  double dy2=0.0;
200  double dx3=0.0;
201  double dy3=0.0;
202  double loc = cross_product(x1, y1, x2, y2, x3, y3);
203  if(std::fabs(loc) > intersection_epsilon)
204  {
205  if(cross_product(x1, y1, x2, y2, x3, y3) > 0.0)
206  {
207  d = -d;
208  }
209  calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1);
210  calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2);
211  calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3);
212  }
213  *x++ = x1 + dx1; *y++ = y1 + dy1;
214  *x++ = x2 + dx1; *y++ = y2 + dy1;
215  *x++ = x2 + dx2; *y++ = y2 + dy2;
216  *x++ = x3 + dx2; *y++ = y3 + dy2;
217  *x++ = x3 + dx3; *y++ = y3 + dy3;
218  *x++ = x1 + dx3; *y++ = y1 + dy3;
219  }
220 
221  //------------------------------------------------------calc_triangle_area
222  AGG_INLINE double calc_triangle_area(double x1, double y1,
223  double x2, double y2,
224  double x3, double y3)
225  {
226  return (x1*y2 - x2*y1 + x2*y3 - x3*y2 + x3*y1 - x1*y3) * 0.5;
227  }
228 
229  //-------------------------------------------------------calc_polygon_area
230  template<class Storage> double calc_polygon_area(const Storage& st)
231  {
232  unsigned i;
233  double sum = 0.0;
234  double x = st[0].x;
235  double y = st[0].y;
236  double xs = x;
237  double ys = y;
238 
239  for(i = 1; i < st.size(); i++)
240  {
241  const typename Storage::value_type& v = st[i];
242  sum += x * v.y - y * v.x;
243  x = v.x;
244  y = v.y;
245  }
246  return (sum + x * ys - y * xs) * 0.5;
247  }
248 
249  //------------------------------------------------------------------------
250  // Tables for fast sqrt
251  extern int16u g_sqrt_table[1024];
252  extern int8 g_elder_bit_table[256];
253 
254 
255  //---------------------------------------------------------------fast_sqrt
256  //Fast integer Sqrt - really fast: no cycles, divisions or multiplications
257  #if defined(_MSC_VER)
258  #pragma warning(push)
259  #pragma warning(disable : 4035) //Disable warning "no return value"
260  #endif
261  AGG_INLINE unsigned fast_sqrt(unsigned val)
262  {
263  #if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM)
264  //For Ix86 family processors this assembler code is used.
265  //The key command here is bsr - determination the number of the most
266  //significant bit of the value. For other processors
267  //(and maybe compilers) the pure C "#else" section is used.
268  __asm
269  {
270  mov ebx, val
271  mov edx, 11
272  bsr ecx, ebx
273  sub ecx, 9
274  jle less_than_9_bits
275  shr ecx, 1
276  adc ecx, 0
277  sub edx, ecx
278  shl ecx, 1
279  shr ebx, cl
280  less_than_9_bits:
281  xor eax, eax
282  mov ax, g_sqrt_table[ebx*2]
283  mov ecx, edx
284  shr eax, cl
285  }
286  #else
287 
288  //This code is actually pure C and portable to most
289  //arcitectures including 64bit ones.
290  unsigned t = val;
291  int bit=0;
292  unsigned shift = 11;
293 
294  //The following piece of code is just an emulation of the
295  //Ix86 assembler command "bsr" (see above). However on old
296  //Intels (like Intel MMX 233MHz) this code is about twice
297  //faster (sic!) then just one "bsr". On PIII and PIV the
298  //bsr is optimized quite well.
299  bit = t >> 24;
300  if(bit)
301  {
302  bit = g_elder_bit_table[bit] + 24;
303  }
304  else
305  {
306  bit = (t >> 16) & 0xFF;
307  if(bit)
308  {
309  bit = g_elder_bit_table[bit] + 16;
310  }
311  else
312  {
313  bit = (t >> 8) & 0xFF;
314  if(bit)
315  {
316  bit = g_elder_bit_table[bit] + 8;
317  }
318  else
319  {
320  bit = g_elder_bit_table[t];
321  }
322  }
323  }
324 
325  //This code calculates the sqrt.
326  bit -= 9;
327  if(bit > 0)
328  {
329  bit = (bit >> 1) + (bit & 1);
330  shift -= bit;
331  val >>= (bit << 1);
332  }
333  return g_sqrt_table[val] >> shift;
334  #endif
335  }
336  #if defined(_MSC_VER)
337  #pragma warning(pop)
338  #endif
339 
340 
341 
342 
343  //--------------------------------------------------------------------besj
344  // Function BESJ calculates Bessel function of first kind of order n
345  // Arguments:
346  // n - an integer (>=0), the order
347  // x - value at which the Bessel function is required
348  //--------------------
349  // C++ Mathematical Library
350  // Convereted from equivalent FORTRAN library
351  // Converetd by Gareth Walker for use by course 392 computational project
352  // All functions tested and yield the same results as the corresponding
353  // FORTRAN versions.
354  //
355  // If you have any problems using these functions please report them to
356  // M.Muldoon@UMIST.ac.uk
357  //
358  // Documentation available on the web
359  // http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html
360  // Version 1.0 8/98
361  // 29 October, 1999
362  //--------------------
363  // Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com)
364  //------------------------------------------------------------------------
365  inline double besj(double x, int n)
366  {
367  if(n < 0)
368  {
369  return 0;
370  }
371  double d = 1E-6;
372  double b = 0;
373  if(std::fabs(x) <= d)
374  {
375  if(n != 0) return 0;
376  return 1;
377  }
378  double b1 = 0; // b1 is the value from the previous iteration
379  // Set up a starting order for recurrence
380  int m1 = (int)std::fabs(x) + 6;
381  if(std::fabs(x) > 5)
382  {
383  m1 = (int)(std::fabs(1.4 * x + 60 / x));
384  }
385  int m2 = (int)(n + 2 + std::fabs(x) / 4);
386  if (m1 > m2)
387  {
388  m2 = m1;
389  }
390 
391  // Apply recurrence down from curent max order
392  for(;;)
393  {
394  double c3 = 0;
395  double c2 = 1E-30;
396  double c4 = 0;
397  int m8 = 1;
398  if (m2 / 2 * 2 == m2)
399  {
400  m8 = -1;
401  }
402  int imax = m2 - 2;
403  for (int i = 1; i <= imax; i++)
404  {
405  double c6 = 2 * (m2 - i) * c2 / x - c3;
406  c3 = c2;
407  c2 = c6;
408  if(m2 - i - 1 == n)
409  {
410  b = c6;
411  }
412  m8 = -1 * m8;
413  if (m8 > 0)
414  {
415  c4 = c4 + 2 * c6;
416  }
417  }
418  double c6 = 2 * c2 / x - c3;
419  if(n == 0)
420  {
421  b = c6;
422  }
423  c4 += c6;
424  b /= c4;
425  if(std::fabs(b - b1) < d)
426  {
427  return b;
428  }
429  b1 = b;
430  m2 += 3;
431  }
432  }
433 
434 }
435 
436 
437 #endif
Definition: agg_arc.cpp:24